![]() |
2 结果和讨论 2.1 膜通量 2.1.1 清水通量
图3 清水通量曲线 Fig.3 Permeation flux of tap water 清水通量实验用水为自来水。由图3 可以看出,PET 膜在低压力下就有着很大的通量,在H △ =0.2cm时,膜通量是37L/m2·h;当H △ 增加到1.0cm 时,膜通量更是达到170L/m2·h。另外,从图3 可以看到一个有意思的现象,清水通量曲线在y 轴的截距并不是零,而是大于零。范彬[7]也发现了这个截距不为零的现象,但是他的结论是小于零,他分析认为是膜材料尼龙筛绢的疏水性所致。本实验所用实验材料也是疏水性的PET 高聚物[10],但为什么却有着相反的结果呢?笔者认为,从图1 的显微镜照片可以看出,膜的单根编织线是由很多细丝组成,在清水过滤时,这些细丝间的孔道很窄,再加上膜的壁厚较大,使得在清水实验时形成毛细作用,并且和膜的疏水性对水的阻抗作用相比占据优势地位,这就是在没有压力水头作用下能形成清水出流的原因。2.1.2 混合液过滤通量
图4 混合液通量曲线 Fig.4 Permeation flux of mixed liquor 图4 是在H = △ 30cm 时混合液过滤时的膜通量曲线,可以看到在开始过滤时,膜的通量仅为4.5L/m2·h,半小时后,通量降到3.75L/m2·h,并且能长时间的维持在这个水平上,这和清水实验的高通量形成巨大的反差。这是否是由于PET 聚酯编织膜的疏水性所导致有待研究。据文献,聚酯分子结构对称,结晶度较高,结构中又没有高极性基团,因此亲水性较差[10]。当过滤混合液时,膜表面附近的水分子的Gibbs 自由能(G)取决于水分子和蛋白质之间以及水分子和膜表面之间的氢键和极性作用,疏水性、非极性膜表面与水无这种相互作用,结果使膜表面水分子的G 值高于主体溶液中水分子的G 值,使得水溶液中疏水性的蛋白质优先迅速吸附于膜表面[11,12]。其次,垃圾渗滤液的营养配比不合理及含有大量不易生物降解的有机物,使得混合液中的生物难以适应,混合液的粘性较大,大量的胞外聚合物(EPS)生成。这样,PET 聚酯编织膜在混合液过滤时,大量EPS、坏死的生物细胞和其它蛋白质类物质会瞬间吸附在膜表面,阻塞了过水通道,蛋白质和膜的疏水性使得水分子很难靠近膜表面,细丝的编制结构和膜壁较厚加剧了这一过程。当PET聚酯膜在清水实验时,由于水中没有或极少蛋白质,难以对水分子的通过构成阻碍。这样,PET 聚酯膜在应用于清水实验和混合液过滤时就会形成巨大的反差。实验发现:膜丝在混合液中抖动能提高膜通量和增强透水稳定性,曝气冲刷不会对膜造成伤害和断丝现象,并且对出水水质影响很小。本实验的膜下反曝气管一直处于工作状态,曝气强度为1.0m3/h。 由于膜通量较低,客观上增加了混合液的水力停留时间,HRT=3d 左右,较高的水力停留时间符合生物法处理高浓度有机废水的要求,能比较充分的实现对污染物的降解,实验结果表明,系统运行稳定,对浊度、COD 和氨氮等都有很好的去除效果。 2.2 混合液MLSS 的变化 DMBR 的接种污泥来自实验室气升循环膜生物反应器的生物池,接种量为3.45g/L。前十天,DMBR污泥的驯化采用了人工配水和水解池出水按2:1 的比例投加的方式,此间的污泥浓度有所上升,到第12天,污泥浓度最大到5.4g/L。此后,膜生物反应器的进水完全该为水解池出水,混合液污泥浓度开始下降,第35 天降至最少2.9g/L,这与垃圾渗滤液的成分复杂不适合微生物正常生长需要有关,通过显微镜镜检可明显看出生物相远不及普通膜生物反应器丰富,而且数量也相对较少,申欢在研究膜生物反应器处理城市垃圾渗滤液时也发现了生物量减少和污泥活性降低的现象[13]。随后,补加接种了8g/L 污泥约1.5L,混合液污泥浓度有所回升。
2.3 对浊度的去除效果
6月9日对膜片进行了化学清洗,随即对膜出水浊度变化情况进行了检测,检测结果如图6 所示。初始膜出水浊度为21.8,跟其它动态膜实验结果[6,9]相比明显低很多,并且在系统运行过程中没有出现泄漏[6]导致浊度回升现象,这可能是混合液中蛋白质类物质易于被膜丝吸附的结果,很少能透过膜,印证了前面的推断的合理性。在半个小时内,浊度迅速降到5 度以下,并且能长时间的维持在1 度以下。正常运行期间的膜出水浊度在常规检测中也都在1 度以下。2.4 对COD 的去除效果 图7 是DMBR 在实验期间对COD 的去除情况。从图上可以看出DMBR 的进水COD 变化幅度较大,在625.8625.8~1420mg/L 之间,平均值为974.4mg/L。出水COD 在136.5~428.9mg/L 之间,平均值300.44mg/L,DMBR 对COD 的平均去除率为69.23%。从图上可以看出,DMBR 在前一段时间的出水COD 相对较低,并且去除率呈下降趋势,这和这段时间的进水采用人工配水和垃圾渗滤液的混合投加有关系,一方面有易生物降解的人工配水的存在使得出水COD 较低,另一方面垃圾渗滤液对混合液生物相的冲击使得COD 去除率有所下降。当系统补加了部分污泥后,COD 的去除率又有了回升。此外,通过对DMBR 上清液和膜出水COD 的监测,膜对上清液COD 有部分截留作用,平均值为18.27%,但却不及其它动态膜[6],究其原因,可能是PET 膜对有机物吸附性更强,膜丝更密集有机物更难通过的结果。 2.5 对NH3-N 的去除效果 DMBR 的HRT 较长,使得世代时间较长的硝化细菌能够大量繁殖生长,达到了对氨氮稳定良好的去除效果,如图8 所示。DMBR 的进水氨氮都在400 mg/L 以上,平均值为509.33mg/L,DMBR 出水氨氮均在20mg/L 以下,并且氨氮的去除率都在94%以上,平均去除率高达98.11%。
3 结论 采用新型疏水性PET 聚酯材料的管式动态膜生物反应器处理垃圾渗滤液,利用重力自流出水。系统稳定连续运行50 天,过滤压力水头为30cm,膜通量维持在3.75L/m2·h 左右。动态膜通量较低的原因,文章分析认为,膜材料的疏水性及膜的编织结构是这一现象的可能因素。疏水性膜在过滤时优选吸附混合液中的蛋白质并排斥水分子的通过,膜的细丝编织结构和膜壁较厚加剧了这一过程,确切的原因有待于深入的研究。 系统对浊度,COD 和氨氮有着很好的处理效果。正常运行时浊度在1 度以下,COD 和氨氮的平均去除率分别在69%和98%以上,并且动态膜对混合液中COD 还有一定的截留作用,平均截留率为18.27%。 (编辑:韦唯敏) 【在线投稿】 |
【关闭窗口】 |
|
| ||||||||||||||||||||||||||